Nýjustu skrif sama notanda:

23. 08 2020 - kl. 13:12
1. 07 2020 - kl. 18:54
1. 07 2020 - kl. 17:02
1. 07 2020 - kl. 16:46
1. 07 2020 - kl. 15:41
30. 06 2020 - kl. 22:39
30. 06 2020 - kl. 22:01
30. 06 2020 - kl. 18:49
25. 06 2020 - kl. 1:25
23. 06 2020 - kl. 16:52
23. 06 2020 - kl. 16:22
22. 06 2020 - kl. 20:05
16. 06 2020 - kl. 13:40
13. 06 2020 - kl. 17:52
13. 06 2020 - kl. 14:09
Kafteinn
Föstudagurinn 31. ágúst 2012 kl. 1:03
Flokkur: Spjaldiđ

Informally, a set of strategies is a Nash equilibrium if no player can do better by unilaterally changing his or her strategy. To see what this means, imagine that each player is told the strategies of the others. Suppose then that each player asks himself or herself: "Knowing the strategies of the other players, and treating the strategies of the other players as set in stone, can I benefit by changing my strategy?"
If any player would answer "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch (or is indifferent between switching and not) then the set of strategies is a Nash equilibrium. Thus, each strategy in a Nash equilibrium is a best response to all other strategies in that equilibrium.

The Nash equilibrium may sometimes appear non-rational in a third-person perspective. This is because it may happen that a Nash equilibrium is not Pareto optimal.
http://en.wikipedia.org/wiki/Pareto_efficiency
Vesen 2009